附 第四章作业

Q1

题目

设有如下三类模式样本集ω1\omega_1ω2\omega_2ω3\omega_3,其先验概率相等,求SwS_wSbS_b

ω1:{(1 0)T,(2 0)T,(1 1)T}ω2:{(1 0)T,(0 1)T,(1 1)T}ω3:{(1 1)T,(0 1)T,(0 2)T}\begin{align} &\omega_1: \{(1\ 0)^T,(2\ 0)^T,(1\ 1)^T\}\\ \nonumber &\omega_2: \{(-1\ 0)^T,(0\ 1)^T,(-1\ 1)^T\}\\ &\omega_3: \{(-1\ -1)^T,(0\ -1)^T,(0\ -2)^T\} \end{align}

由题意可知

P(ω1)=P(ω2)=P(ω3)=13P(\omega_1)=P(\omega_2)=P(\omega_3) = \frac{1}{3}

先算出样本均值:

m1=(43 13)Tm2=(23 23)Tm3=(13 43)Tm_1=\left(\frac{4}{3}\ \frac{1}{3}\right)^T \\ m_2=\left(-\frac{2}{3}\ \frac{2}{3}\right)^T \\ m_3=\left(-\frac{1}{3}\ -\frac{4}{3}\right)^T

则可得总体均值:

m0=E{x}=j=13P(ωi)mi=(19 19)Tm_0=E\{x\}=\sum_{j=1}^3P(\omega_i)m_i=\left(\frac19\ -\frac19\right)^T

类内离散度矩阵:

Sw=i=13P(ωi)E{(xmi)(xmi)Tωi}=i=13P(ωi)1Nk=1Ni(xikmi)(kikmi)T=13(29191929)+13(29191929)+13(29191929)\begin{align} S_w &= \sum_{i=1}^3 P(\omega_i)E\{(\boldsymbol x-m_i)(\boldsymbol x-m_i)^T\mid \omega_i\}\\ \nonumber \\ &=\sum_{i=1}^3P(\omega_i)\frac1N\sum_{k=1}^{N_i}(x_i^k-m_i)(k_i^k-m_i)^T\\ \\ &=\frac13 \begin{pmatrix} \frac29 & -\frac19\\ -\frac19 & \frac29 \end{pmatrix}+ \frac13 \begin{pmatrix} \frac29 & \frac19\\ \frac19 & \frac29 \end{pmatrix}+ \frac13 \begin{pmatrix} \frac29 & -\frac19\\ -\frac19 & \frac29 \end{pmatrix} \end{align}

类间离散度矩阵:

Sb=i=1cP(ωi)(mim0)(mim0)TS_b=\sum_{i=1}^cP(\omega_i)(m_i-m_0)(m_i-m_0)^T

具体计算我这里通过numpy计算得到:

Sw= [[2/9 -1/27] [-1/27 2/9]]

Sb = [[62/81 13/81] [13/81 62/81]]

Q2

题目

设有如下两类样本集,其出现概率相等:

ω1:{(0 0 0)T,(1 0 0)T,(1 0 1)T,(1 1 0)T}ω2:{(0 0 1)T,(0 1 0)T,(0 1 1)T,(1 1 1)T}\omega_1:\quad\{(0\ 0\ 0)^T,(1\ 0\ 0)^T,(1\ 0\ 1)^T,(1\ 1\ 0)^T\} \\ \omega_2:\quad\{(0\ 0\ 1)^T,(0\ 1\ 0)^T,(0\ 1\ 1)^T,(1\ 1\ 1)^T\}

用K-L变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置

求总体均值

m=E{x}=0.5×14j=14x1j+0.5×14j=14x2j=(12 12 12)T\begin{align} \boldsymbol m &= E\{\boldsymbol x\}\\ \nonumber &=0.5\times\frac14\sum_{j=1}^4x_{1j} + 0.5\times\frac14\sum_{j=1}^4x_{2j}\\ &=\left(\frac12\ \frac12\ \frac12\right)^T \end{align}

平移样本到原点:

z=xm\boldsymbol z = \boldsymbol {x-m}

求协方差矩阵:

R=i=12P(ωi)E(zi ziT)=i=12P(ωi)1Nj=1N(zij zijT)=12[14j=14z1jz1jT]+12[14j=14z2jz2jT]=(140001400014)\begin{align} R &= \sum_{i=1}^2P(\omega_i)E(\boldsymbol z_i\ \boldsymbol z_i^T)\\ \nonumber \\ &=\sum_{i=1}^2P(\omega_i)\frac1N\sum_{j=1}^N(z_{ij}\ z_{ij}^T)\\ \\ &=\frac12\left[\frac14\sum_{j=1}^4z_{1j}z_{1j}^T\right] + \frac12\left[\frac14\sum_{j=1}^4z_{2j}z_{2j}^T\right]\\ \\ &=\begin{pmatrix} \frac14 & 0 & 0\\ 0 & \frac14 & 0\\ 0 & 0 & \frac14 \end{pmatrix} \end{align}

求特征值和特征向量:

λ1=λ2=λ3=14ϕ1=(100)ϕ2=(010)ϕ3=(001)\lambda_1=\lambda_2=\lambda_3=\frac14\\ \phi_1= \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \\ \phi_2= \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} \\ \phi_3= \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}

(1) 降到二维

取前两大的特征值对应的特征向量组成转换矩阵:

Φ=(100100)\Phi = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix}

则可以得到降维后的y=ΦTxy=\Phi^Tx

ω1:{(12 12)T,(12 12)T,(12 12)T,(12 12)T}ω2:{(12 12)T,(12 12)T,(12 12)T,(12 12)T}\omega_1:\left\{\left(-\frac12\ -\frac12\right)^T,\left(\frac12\ -\frac12\right)^T, \left(\frac12\ -\frac12\right)^T, \left(\frac12\ \frac12\right)^T\right\}\\ \\ \omega_2:\left\{\left(-\frac12\ -\frac12\right)^T,\left(-\frac12\ \frac12\right)^T, \left(-\frac12\ \frac12\right)^T, \left(\frac12\ \frac12\right)^T\right\}

则绘制出图片:

(2) 降到一维

同理,取第一大的特征值对应的特征向量作为转换矩阵,即可得到将为结果:

代码

最后更新于

这有帮助吗?